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Motivation

3D printing technology has revolutionized manufacturing processes, offering en-

hanced precision and versatility in product design. However, the materials commonly

used in this domain often exhibit brittleness, leading to concerns about their durabil-

ity. The frequent and irreversible damage to these materials necessitates a solution

to enhance their longevity and reduce maintenance.

Self-healing materials, characterized by their ability to recover from damage au-

tonomously, present a promising avenue to address this challenge. Hydrogen bond-

ing, a fundamental atomic interaction, plays a pivotal role in facilitating the self-

healing properties of materials. Yet, systematically exploring the chemical space to

identify compounds with optimal hydrogen bonding for self-healing remains a com-

plex task.

This research aims to employ Recurrent Neural Networks-based (RNNs) algorithms

to navigate this vast chemical space, striving to design compounds that harness the

potential of hydrogen bonding for enhanced self-healing properties.

Figure 1. Self-healing

Background

The convergence of computational design and molecular science, empowered by the

advancements in machine learning, has primarily focused on the realm of drug dis-

covery. Architectures such as Recurrent Neural Networks (RNNs) and autoencoders

have demonstrated notable precision in generating drug molecules. However, their

utilization has been predominantly confined to this specific domain.

The table presented herein offers a comprehensive overview of the prevalent meth-

ods within this field, emphasizing their architectural selections and primary applica-

tions. Notably, the predominant emphasis has been on the generation of small drug

molecules, harnessing the sequential nature of SMILES representations and the ex-

ploration of latent molecular features.

Method Architecture Dataset
Primary

Application

REINVENT
RNN, LSTM

GRU

GDB-13

ChEMBL

Drug molecule

generation

CharRNN LSTM ChEMBL
Drug molecule

generation

LatentGAN
AutoEncoder &

GAN
ChEMBL

Drug molecule

generation

ORGAN GAN and RL GDB17 (Subset)
Drug molecule

generation

GGM GNN IBS
Organic compound

generation

Table 1. Summary of Methods in Drug Molecule Generation

Nevertheless, the potential of these generative models extends beyond drug syn-

thesis. This work explores the relatively uncharted territory of designing compounds

tailored for 3D printing applications, with a particular focus on those possessing self-

healing properties.

Exploratory Data Analysis

Dataset Selection and Sampling: The GDB-13 dataset, an extensive repository com-

prising 970 million small organic molecules, was selected for the work. To conduct

a comprehensive exploration, we performed random sampling, extracting 10,000

molecules on ten separate occasions, creating a representative subset for in-depth

analysis.

Refinement for Self-Healing Compounds: Given the research’s primary focus on self-

healing compounds tailored for 3D printing applications, a meticulous refinement

process was imperative. Compounds were primarily chosen based on their hydro-

gen bonding capabilities, a fundamental aspect of self-healing mechanisms.

Analysis and Findings:

1. Hydrogen Bonding Metrics: On average, the sampled compounds displayed

approximately 3 Hydrogen Bonding (HB) Acceptors and 1 HB Donor. This

distribution suggests a substantial potential for self-healing within the

compounds.

2. Aliphatic Carbocycles & Heterocycles: The dataset exhibited a higher prevalence

of aliphatic heterocycles compared to aliphatic carbocycles. This distinction

implies an increased likelihood of hydrogen bonding sites in the compounds.

3. Heteroatoms: The dataset compounds had an average count of approximately 3

heteroatoms, further emphasizing their versatility and applicability in the domain

of self-healing materials.

The EDA has revealed that while the GDB-13 dataset is extensive, a refined

subset of compounds with strong hydrogen bonding attributes is pivotal for

achieving the research objectives. This subset, characterized by its inherent

potential for hydrogen bonding and subsequent self-healing compound

generation.

Figure 2. Exploration of GDB-13

Methods

Choice of Model - RNN-based REINVENT: In this study, we employed the RNN-

based REINVENT model due to its proficiency in handling sequential data. The rep-

resentation of chemical compounds using the SMILES notation inherently involves

sequential information.

Addressing RNN Limitations with GRUs: While RNNs excel in processing sequen-

tial data, they encounter challenges related to short-term memory and the vanishing

gradient problem during backpropagation. To overcome these limitations, we incor-

porated Gated Recurrent Units (GRUs).

Model Architecture: The process begins with the tokenization and one-hot encoding

of SMILES.This preprocessed data undergoes a transformation in an embedding layer,

converting discrete SMILES into a continuous 256-dimensional representation. The

core of the model comprises three layers with 512 GRU units each. The final step

involves a fully-connected linear layer, which performs a softmax operation.

Results & Discussions

Training Dataset and Epochs: The model utilized a subset of 1 million compounds

from the GDB-13 dataset, emphasizing those with at least 2 Hydrogen Bond accep-

tors and donors, resulting in a dataset of approximately 500,000 compounds. Training

persisted for 50 epochs. Around 100,000 compoundswere generated for evaluation.

We systematically evaluated the model on various metrics: Validity, Synthetic Acces-

sibility Score (SA Score), Baeyer Strain, and Flexibility (Rotatable Bond Count (RBC))

to provide a comprehensive assessment of the generated compounds ensuring they

alignwith the research’s objectives of self-healing and hydrogen bonding capabilities.

1. Flexibility (RBC): Zero RB dominate among the Generated Compounds, indicating

structurally rigid molecule generation. This fits into the criterion for creating

durable 3D printing material.

2. Baeyer Strain: A significant peak at zero Baeyer strain for the Generated

Compounds highlights the model’s proficiency in generating cyclic compounds

with minimal strain.

3. SA Score: The average SA Score of 5 depicts the it’s ability to create molecules

that strike a balance between novelty and practical synthetic accessibility.

Figure 3. Comparison with the trained dataset

While the results obtained are promising, there is always room for improvement. The

generated compounds could be validated using molecular dynamic simulations and

in lab. Model can be fine-tuned with a more extensive dataset with additional char-

acteristics associated with self-healing.
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