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Abstract

Chest radiography is a fast, low cost, and widely available first line test for sus-
pected pneumonia and other respiratory infections, which makes automation clin-
ically valuable where CT and subspecialty radiologists are limited. Yet adoption
of automated CXR analysis using machine learning has been slowed by the mem-
ory and compute demands of large deep convolutional networks, their training
time, and the need for GPU infrastructure, which limit deployment at the edge
and in resource constrained settings. In acute care, separating COVID-19, bacte-
rial pneumonia, and viral pneumonia is necessary for isolation, preventive care,
so the classification is valuable and directly actionable by hospitals and clinics.
We present a lightweight pipeline for multiclass CXR classification that applies
a single level discrete wavelet transform and computes 11 statistical and texture
descriptors per subband, producing a 44 dimensional feature vector for tabular
classifiers. We evaluate CXRs stratified across four classes (healthy, COVID-
19, bacterial pneumonia, viral pneumonia). Random Forest and XGBoost reach
96.83% and 97.76% test accuracy, respectively, outperforming transfer learned
DCNN baselines on the same data. Ablations show that features pooled across
subbands outperform any single subband and that texture descriptors including
entropy, contrast, homogeneity, dissimilarity, and correlation carry most of the
signal. Among wavelet bases, single level Bior6.8 performs best, while deeper
decompositions reduce accuracy at this data scale. Because computation is lim-
ited to a grayscale wavelet transform and tabular learning, the method runs on
commodity CPUs, has a small memory footprint, and is simple to reproduce, with
strong per class performance for COVID-19, bacterial pneumonia, and viral pneu-
monia that supports further treatment.
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1 Introduction

Machine learning is now deployed across medical diagnostics. It supports detection and risk pre-
diction, and quick adaption has been accelerated with better datasets and algorithms. In medical
imaging specifically, recent reviews describe a broad shift from pilot studies to clinically oriented
evaluation and deployment [19]. Imaging has been a prime driver of this growth, especially in CT
and chest radiography. CXRs are fast, inexpensive, and available at the point of care. Process im-
provements and digital mobile radiography have pushed turnaround for urgent CXRs from about an
hour to well under half an hour in some settings, with minutes from obtaining to interpreting the
final results [8].

Despite this progress, many CXR studies on COVID-19 frame the task as binary detection. Reviews
note that binary designs are common, while multiclass separation remains less represented and more
challenging [10]. In practice, hospitals need to distinguish COVID-19 from other pneumonias, es-
pecially bacterial and viral components for providing better care. A second limitation is reliance on
large deep convolutional networks. Common backbones such as ResNet-50 have roughly 25 mil-
lion parameters which translates into material memory and compute requirements. Even “mobile”
families reduce but do not remove the need for specialized hardware during training, and can re-
main heavy at higher clinical resolutions. These demands slow iteration, raise costs, and complicate
edge deployment in resource-constrained environments. Industry surveys also cite infrastructure and
integration as adoption barriers.

To tackle the above limitations we introduce a lightweight pipeline that exceeds transfer-learned
DCNN baselines. Our contributions include:

1. Lightweight CXR classification system. We introduce a compact pipeline based on a single
level discrete wavelet transform and a small set of statistical and texture descriptors per
subband, yielding a 44 dimensional feature vector for fast tabular learning on CPUs.

2. Better accuracy than DCNNs. On the same splits, Random Forest and XGBoost achieve
96.83% and 97.76% test accuracy, respectively, outperforming transfer-learned DCNN
baselines.

3.

2 Literature Review

Panayides et al. [18] conducted a comprehensive review of state-of-the-art artifi-cial intelligence
(AI) solutions in medical imaging informatics, elucidating critical challenges in clinical translation
and proposing forward-looking strategies to advance healthcare practice. The review underscores
the imperative for robust medical data management frameworks and the seamless integration of AI
into imaging workflows to enhance patient outcomes. Xu et al. [23] examined the transformative
potential of generative AI within medical imaging, focusing on synthetic data generation, im-age
enhancement, anomaly detection, and image-to-image translation. Their findings demonstrate that
generative models, such as generative adversarial networks (GANs), substantially augment brain
tumour datasets, fostering improved diagnostic accuracy and patient care. Mobarakeh et al. [14]
provided an in-depth analysis of machine-learning methodologies for detecting, classifying, and
segmenting COVID-19 in CT and X-ray imaging modalities. Their study highlights the efficacy
of deep learning models in precisely delineating pathological lesions, empowering radiolo-gists to
make more accurate and efficient clinical decisions in diagnosing respiratory infections. Gadepally
et al. [5] offered a case-based exploration of the generalizability of AI models in medical imag-
ing, emphasizing the necessity of understanding algorithmic design, training data intricacies, and
deployment environments. This review accentuates the importance of equipping radiologists with
a nuanced under-standing of the risks and benefits associated with AI algorithms to ensure their
judi-cious and practical application in clinical settings. Li et al. [12] presented an exhaustive review
of deep learning (DL) algorithms in medical image analysis, highlighting their profound impact
on advancing diagnostic precision and operational efficiency. The study delineates the potential
of cutting-edge DL methodologies to transform disease detection and optimize treatment planning
paradigms. Kavitha and Inbarani [9] proposed an innovative hybrid framework that synergizes Bayes
WT with convolutional neural networks (BayesWavT-CNN) to classify chest X-ray images into nor-
mal and COVID-19 categories. Their approach effectively attenuates image noise, culminating in
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Figure 1: Framework followed in the current work: DWT-based decomposition to get sub-images
(Approximation, Diagonal, Horizontal, and Vertical details), feature extraction (statistical and
texture-based) and ML-based (RF and XGB) multi-class classification among COVID-19, Normal,
Pneumonia Bacterial, and Pneumonia Viral.

enhanced classification accuracy. Abdel-Hamid [1] investigated the deployment of wavelet and con-
tourlet trans-forms for COVID-19 classification in chest CT imaging. The study demonstrated that
multiresolution analysis enables the segregation of diagnostically salient image fea-tures across dis-
tinct frequency subbands, thereby bolstering diagnostic accuracy. Yasar and Ceylan [24] developed
an advanced deep-learning pipeline that integrates local binary pattern features, dual-tree complex
wavelet transforms, and convolutional neural networks to detect COVID-19 in chest X-ray images.
Their pipeline achieved high precision and demonstrated significant real-time applicability in iden-
tifying COVID-19 cases. Collectively, these investigations underscore substantial advancements in
applying wavelet-based methodologies and deep learning architectures to medical image analysis,
particularly in augmenting the detection and classification of COVID-19 through chest X-ray and
CT imaging modalities.

3 Methods

3.1 Data and task

We study four-class chest-X-ray classification with labels Healthy, COVID-19, Bacterial pneumonia,
and Viral pneumonia. The corpus contains 4,265 radiographs from [2]. We use a 70/30 stratified
split with 2,986 images for training and 1,279 for testing. Images are treated as single-channel
grayscale inputs.

3.2 Preprocessing

Each image is resampled to a fixed resolution, cast to 8-bit when needed, and normalized [0, 1].
We do not apply bone suppression or lung masking in the main pipeline. This keeps the system
lightweight and isolates the contribution of multiresolution texture cues.

3.3 Discrete wavelet transform

We compute a single-level 2-D DWT that decomposes every CXR into four sub-bands: LL approx-
imation, LH horizontal detail, HL vertical detail, and HH diagonal detail. The DWT implements
a multiresolution, orientation-selective analysis that aligns with classical pyramid and quadrature-
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filter theory and is widely used for texture and edge analysis [13]. Our primary mother wavelet
is biorthogonal Bior6.8. Biorthogonal families admit symmetric, linear-phase analysis and syn-
thesis filters that preserve edges and reduce phase distortion, properties that are desirable at lung
borders and around subtle perihilar opacities. Foundational results establish compactly supported
biorthogonal bases with linear-phase symmetry and exact reconstruction [4]. We also evaluate Haar,
Daubechies, Coiflet, and Symlet at level-1, and we compare Bior6.8 at level-1 with a deeper level-4
variant. The set of available discrete wavelet families.

3.4 Feature extraction

From each sub-band we compute a compact set of first-order statistics and GLCM-based texture
descriptors, then concatenate across bands to form a tabular vector, as seen in Fig. 1.

1. First-order per sub-band: minimum, maximum, mean, standard deviation.

2. Texture per sub-band from gray-level co-occurrence matrices: energy, entropy, homo-
geneity, contrast, dissimilarity, correlation. We compute GLCMs at four orientations:
0, 45, 90, 135 at unit distance and average properties over orientations. The definitions
of these properties follow the scikit-image documentation, which implements the standard
Haralick family.

This yields a 40–44-D vector in our implementation. The design captures global density in LL, and
oriented texture in LH, HL, and HH, which radiologists use to judge air-space disease. The classical
source for co-occurrence texture features is Haralick et al. and we follow those definitions.

3.5 Machine Learning algorithms

We use two tree-based learners suited to compact tabular features and amenable to feature attribu-
tion: Random Forest and XGBoost. These models avoid the heavy compute of large CNNs while
remaining strong on multiscale texture features.

3.6 Ablations

We probe where performance comes from with three targeted ablations.

1. Sub-band contribution compares LL only, each detail band alone, pairwise combinations
with LL, LL+LH+HL, and LL+LH+HL+HH. This tests scale and orientation complemen-
tarity.

2. Wavelet family and depth compares Bior6.8 with Haar, Daubechies, Coiflet, and Symlet at
level-1, and contrasts Bior6.8 at level-1 versus level-4. This tests edge preservation and the
bias–variance trade-off in multiresolution analysis.

3. Descriptor importance removes groups and single statistics to test the hypothesis that tex-
ture carries most of the discriminative signal on CXR.

4 Results

4.1 Comparison with DCNN baselines

Across the different pretrained backbones fine-tuned with Strategy I [2], test accuracies fall between
90 and 94 with pre-trained VGG16 at 94.38%. Strategy II shows a similar band with small model-
dependent shifts, for example VGG16 at 95.20% and ResNet50 at 93.63%. Table 1 aggregates these
DCNN results and places them next to our compact pipeline. Using a one-level Bior6.8 DWT with
forty-four handcrafted statistics and textures coupled to XGBoost, the held-out test accuracy reaches
97.76%, exceeding the best DCNN values under either strategy despite a dramatically smaller fea-
ture space and no heavy preprocessing. The same feature stack with Random Forest attains 96.83%,
again competitive with or above the DCNNs.

In supervised imaging a model is the full end-to-end pipeline that maps pixels to predictions. This
includes deterministic preprocessing. Standard works formalize the pipeline as a single evaluable
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Table 1: Comparison of transfer-learning DCNNs under two preprocessing strategies with the pro-
posed wavelet–tabular pipeline on the same four-class CXR dataset. Accuracy and macro-averaged
Precision, Recall, and F1 are reported. Strategy I applies CLAHE and a blackhat morphological
operation. Strategy II uses raw images without preprocessing [2].

Method Accuracy (%) Macro P (%) Macro R (%) Macro F1 (%)
DenseNet201I 90.99 90.60 90.30 90.40
DenseNet201II 92.31 91.90 91.60 91.70
MobileNetI 92.79 92.30 92.00 92.10
MobileNetII 90.14 89.70 89.40 89.50
ResNet50I 93.40 93.00 92.80 92.90
ResNet50II 93.63 93.20 93.00 93.10
VGG16I 94.38 94.60 94.40 94.50
VGG16II 95.20 95.30 95.10 95.20
XceptionI 93.51 93.00 92.80 92.90
XceptionII 92.92 92.50 92.30 92.40

This work
XGB + Bior6.8 (Level-1) 97.76 97.5 97.5 97.5
RF + Bior6.8 (Level-1) 96.83 96.50 96.50 96.50

object, and best-practice checklists in medical imaging require that preprocessing be specified as
part of the method [20]. Under this view, comparing our wavelet–tabular system to transfer-learning
DCNN pipelines that embed CLAHE and morphological enhancement is appropriate when task,
labels, split, and metric are matched. Our previous work used the same four-class dataset family
with transfer-learning DCNNs and reported Strategy I results in the 90.99–94.38% range across
DenseNet201, ResNet50, Xception, MobileNet, and VGG16 [2]. On the same family, one-level
Bior6.8 with forty-four handcrafted features and XGBoost achieves 97.76% test accuracy. Read to-
gether with our ablations, these findings support the claim that multiscale, orientation-aware textures
are a stronger and more practical alternative to high-capacity transfer learning for four-class CXR
on this dataset family [2].

A second part of the claim is efficiency and memory. CNN backbones carry tens to hundreds of
megabytes of weights. VGG16, ResNet50, DenseNet201, Xception, and MobileNet contain 138.4,
25.6, 20.2, 22.9, and 4.3 million parameters respectively. In contrast, our feature extractor is a
single-level wavelet transform with a 44-dimensional output, and the downstream learner is a tree
ensemble whose footprint scales with the number and depth of trees rather than with convolutional
channels. XGBoost is designed for memory-efficient training and CPU-speed inference. On a 44-
dimensional representation, training and inference run on CPU with a model size that is suitable for
embedded or clinical desktop deployment.

4.2 A compact wavelet–tabular pipeline is competitive on multi-class CXR

Table 2: Per-class metrics for XGBoost with Bior6.8 (level-1) on the held-out test set. Macro and
weighted averages summarize overall performance.

Class Precision Recall F1
Healthy 0.98 0.98 0.98
COVID-19 0.97 0.98 0.97
Bacterial Pneumonia 0.97 0.96 0.96
Viral Pneumonia 0.98 0.98 0.98

Macro Avg. 0.98 0.98 0.98
Weighted Avg. 0.98 0.98 0.98

Using all four DWT sub-bands and the full 44-feature vector, our models reach 96.83% accuracy
with Random Forest and 97.76% with XGBoost on the held-out set. Removing wavelet features
drops performance to 88.5% and 89.3%, showing that multiscale structure is the main driver rather
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Figure 2: Caption

than raw intensities. This aligns with prior evidence that texture-centric representations capture ra-
diographically meaningful variation in CXRs and can rival heavier CNNs when datasets are modest
and labels are heterogeneous. A previous study on CXR pneumonia showed strong performance
from textural biomarkers such as radiomics and related descriptors with classical learners, reinforc-
ing that compact texture features are effective and easy to implement [17]. Table 2 details these
per-class metrics and macro as well as weighted averages, and Fig. 1a visualizes the confusion
matrix for XGBoost with Bior6.8 at level-1. The matrix is sharply diagonal with only a handful
of false positives between Healthy and the two pneumonia classes, and minimal confusion between
COVID-19 and Bacterial Pneumonia, which are often challenging to separate on frontal radiographs.
Haralick features summarize how gray levels co-occur in a neighborhood. They are computed from
a gray-level co-occurrence matrix and capture contrast, homogeneity, energy, entropy, and corre-
lation, which track heterogeneity and edges that radiologists associate with opacities [6, 3]. Local
binary patterns threshold each pixel’s neighborhood against the center to form a binary code that is
robust to monotonic gray-scale changes and sensitive to micro-patterns such as edges and spots [16].

4.3 Sub-band synergy and texture importance

Fig. 1b aggregates headline accuracies for different sub-band selections.

The feature ablation heatmap in Fig. 2 shows that texture is the primary carrier of discriminative
information. Removing the texture group—energy, entropy, homogeneity, contrast, dissimilarity,
correlation—produces the largest drop, 6.0% for RF and 3.7% for XGB. Excluding any single first-
order statistic causes only small changes, typically less than 0.3% for RF. This matches the radi-
ologic view that texture encodes heterogeneity in aeration and consolidation. It also aligns with
classical GLCM theory, where co-occurrence statistics summarize local gray-level relationships that
track edges, clumping, and mottled opacities [22, 6].

Independent studies support this emphasis on texture for CXRs. Ortiz-Toro and colleagues showed
that textural biomarkers, including radiomics, can detect pneumonia effectively across public
datasets using classical learners [17]. Kim demonstrated that a small set of GLCM features can
separate COVID-19 from non-COVID pneumonia on a bias-minimized single-institution cohort,
with the most influential variables drawn from contrast and difference-variance [11]. LBP-based
pipelines also report strong performance when paired with SVM or related classifiers, indicating
that micro-pattern codes carry diagnostically useful information in chest radiographs [15]. Broader
texture-centric frameworks that fuse LBP, HOG, and Haralick families further corroborate the value
of handcrafted texture on CXR tasks under limited data [7]. Taken together, our ablations show that
multiscale information works best when sub-bands are combined. The evidence from radiomics and
LBP studies explains why. Texture features capture distribution and clustering of opacities that de-
fine pneumonia on radiographs. First-order intensity alone carries signal, yet it is the multiresolution
texture that consistently closes the gap to state-of-the-art performance.

4.4 Wavelet family and depth

At level-1, Bior6.8 is the top performer, reaching highest accuracy above 6-8 % points over Haar,
Daubechies, Coiflet, and Symlet cluster which achieve near 90–92%. This confirms that the choice
of mother wavelet drives accuracy in our setting. Bior6.8’s linear-phase and near-symmetric anal-
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Figure 3: Caption

ysis–synthesis filters preserve edges and reduce phase distortion, which is desirable around lung
borders and subtle perihilar opacities. Authoritative references describe linear-phase realizations
for biorthogonal families and explain why edge structure is better maintained than with many or-
thogonal designs [21]. With limited data, deeper decompositions can inject redundant fine-scale
coefficients and expand the feature space without adding stable signal. In our experiments, Bior6.8
at four levels performs worse (93.3% RF, 93.2% XGB) than single-level Bior6.8 (96.8%, 97.8%).
The single-level setting captures coarse and mid-scale texture with fewer features and better gener-
alization. This pattern is consistent with standard bias–variance considerations for small datasets.
Directional multiscale context. For a compact and auditable feature space, level-1 Bior6.8 offers a
sound default. It aligns with theory on biorthogonal, linear-phase filter banks and it matches what
we observe empirically on multi-class CXR classification.

5 Conclusion

We introduced a lightweight multiclass CXR pipeline that uses a single level wavelet transform and
compact texture descriptors to classify healthy cases, COVID-19, bacterial pneumonia, and viral
pneumonia, and we showed that tabular learners outperform transfer-learned DCNN baselines on
the same data. The main limitation is scope: our labels cover a narrow set of thoracic findings,
so the next step is to include more clinically relevant CXR categories and to benchmark alongside
complementary CT workflows that often serve as the reference standard for pneumonia assessment.
Directional multiscale representations such as shearlets are a natural extension for the future work.
Shearlets encode anisotropic, edge-like structures with high directional selectivity and sparse ap-
proximation, which matches pulmonary anatomy better than isotropic wavelets. Building on these
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findings, our next step is to integrate shearlet based descriptors into the same lightweight pipeline,
which have been reported to surpass wavelet features, as well as outperform end-to-end deep base-
lines on small, heterogeneous datasets.
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